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Abstract 

From social media posts to the Internet of Things (IoT) sensors, the contemporary world 

generates millions of terabytes of data each day. However, obscured behind this influx of 

modern-day big data, is the vast sea of unutilized information from history waiting to be 

analyzed to understand the evolution of society as we know it. Fortunately, a paradigm shift is 

now underway and many initiatives such as the digitization of ancient manuscripts, etc are 

underway to establish open-access archaeological data repositories. The immense wealth of 

data accumulated over millennia is now becoming accessible, opening doors to a new frontier 

in archaeological research. Amidst this newfound availability of data, mining, and analysis 

techniques are increasingly being applied to uncover interesting insights, discern temporal 

trends, etc.  This newly emerging field of archaeological data mining serves as a bridge 

between the wisdom of antiquity and the data-driven age, enriching our understanding of 

human history and culture in ways that were once unimaginable. 

 

The objective of this term paper is to explore the impact of data mining techniques in 

archaeological research enhancement. To this effect, a detailed study of the various techniques 

and latest research presentations that utilize data mining to derive previously unknown insights 

from archaeological data was undertaken. Moreover, to demonstrate the applicability of data 

mining in the field of archaeology, three case studies are also presented.  

 

This term paper examines the use of data mining techniques in archaeology, examining 

different approaches and how they may be applied to uncover insights from archaeological data 

that were not previously known. The content delves into collaborative aspects of 

interdisciplinary research and attempts to shed light on the broader implications of utilizing 

data mining in the field of archaeology, a practice that contributes to a nuanced understanding 

of societal structures and cultural exchange throughout history. The contents of this article aim 

to capture the ongoing discourse of gaining insights into the past through the lenses of 

contemporary analytical frameworks as archaeological research ventures into new and exciting 

territories. 
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1. Introduction  

 

It can be argued that one of the main aims of the field of psychology is to conduct investigations 

into gathered residual evidence in an attempt to understand  social and societal contexts of the 

past. When one thinks of archaeological excursions and information gathering exercises, 

computers and databases are far from our mind. Instead, the image that comes to mind is that 

of a group of people wearing hats kneeling with hand tools in the middle of sand filled desserts, 

carefully sifting away to dig-up earthly goods from pat. Archaeology traditionally has been a 

computer shy field but in recent years due to advent of advanced techniques many headways 

have been made that have had the professionals in the field relying more on computers for 

sound results [2-3]. From uncovering hidden Mayan civilizations through the application of 

lidar technology [4] to digitally reconstructing the face of King Tutankhamun using advanced 

computing methods [5], modern technology has fundamentally transformed the landscape of 

archaeology, offering unprecedented insights and reshaping our understanding of ancient 

civilizations. 

 

In terms of statistical and data based analysis, techniques like clustering have been used in the 

field of archaeology since the 1970s. An example of this is the work of Hodder et al [6]. Their 

book on spatial analysis in archaeology has emerged as a pioneering study in the field of 

application of modern statistical and quantitative techniques to archaeology. However, the use 

of advanced data mining tools had been few and far between in the field up until a few years 

ago. This lack of research can be attributed to the lack of availability of properly documented 

data sources that lie at the centre of data mining analysis.  
 

Each year, billions of dollars are spent by public and government funded private agencies to 

carry out archaeological research [7]. However, despite the abundance of social context data 

collected over many years, preservation and accessibility remain challenges. Long-range open-

source data, crucial for understanding phenomena like the loss of identity in migrant 

populations, often lacks proper preservation. In the US, approximately 30,000 mandated 

archaeological studies annually yield valuable results, but their storage in outdated formats 

hinders practical use [8]. Fortunately, a paradigm shift is now underway. Initiatives such as 

York University's Archaeological Data Service [9] and Oxford University's ORAU [10] are 

now addressing these issues by preserving and providing accessible guidelines for sustainable 

data storage in archaeology.  

 

Today, archaeology is rapidly embracing 'digital humanities,' leveraging well-documented 

datasets and advanced analytics tools to revolutionize the field [11]. While archaeological 

datasets may not rival those in core computational fields, the utilization of previously untapped 

resources is reshaping research paradigms. Archives are increasingly digitized, and machine 

learning and data mining uncover valuable insights. Traditional closed reading methods are 

giving way to quantitative approaches, enabling a comprehensive perspective and revealing 

previously imperceptible trends in findings [12]. 

 

In line with the present line of argumentation, this article explores the use of data mining 

techniques in archaeology during present times, investigating diverse approaches to reveal new 

insights from archaeological data. The article is divided into five main sections. The first and 

present section serves as an introduction into the theme of the article. The second section 

presents a detailed literature survey that explores past work done in the field with an aim to 

capture the ongoing dialogue on understanding the past through contemporary analytical 

frameworks, marking the exciting frontiers of archaeological research. Following this, three 
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case studies are presented to demonstrate the applicability of data mining principles in the field 

of archaeology.  

 

The first case study utilizes the Beazley Archive Pottery Database (BAPD) about ancient Greek 

artefacts with the aim to understand the evolution of trends in pottery design over time and 

what might these trends indicate in terms of cultural and socio-political shifts within the society 

of ancient Greece itself.  The second case study utilizes the Southern African Radiocarbon 

Dating Database (SARD) to create a Random Forest classifier to predict the Archaeological 

time periods to which an unearthed artefact might belong to in the African context. The third 

case study utilizes the Digital Archive for Grave Goods: Objects and Death in Later Prehistoric 

Britain to explore relationships amongst the burial site attributes with an aim to identify the 

significance of specific goods occurrences within distinct cultural contexts. The conclusions of 

the undertaking and some challenges facing the field in the future are also discussed. In the 

section that follows, the important terms and some abbreviations used throughout the rest of 

the article are tabulated.  

 

1.1.Abbreviations and Important Terms 

 

Table 1 below, presents a comprehensive list of the important terms and abbreviations that are 

referenced throughout the remaining text. 

 
Table 1: Abbreviations and Terms 

Term / Abbreviation Definition 

lidar 

Light Detection and Ranging. It is a remote sensing method used to examine the 

surface of the Earth.  

ORAU Oxford Radiocarbon Accelerator Unit 

BAPD Beazley Archive Pottery Database. Used for case study number 1. 

SARD Southern African Radiocarbon Dating Database. Used for case study number 2. 

GIS Geographical Information System 

PCA Principal Component Analysis [38] 

KCA Kernel Density Estimation Clustering Algorithm [39] 

K-Means A clustering algorithm [40] 

DBSCAN Density-based spatial clustering of applications with noise [41] 

C4.5 Algorithm A decision tree generation algorithm [42] 

Euclidean Distance Distance calculation mechanism [43] 

VGG-16 A convolutional neural network architecture [44] 

KNN K Nearest Neighbour [45] 

SVM Support Vector Machine [46] 

SSVM Smooth Support Vector Machine [47] 

Gabor Wavelet 

Transformations Complex functions constructed to serve as a basis for Fourier transforms [48] 

SIMCA Soft independent modelling of class analogy [49] 

LDA Linear Discriminant Analysis [50] 
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Learning Vector Quantizer Artificial neural network algorithm that gives the optimal training instances [51] 

fuzzywuzzy library Python string matching library [52] 

Bagging Bootstrap Aggregation [53] 

csv file comma separated files 

Apriori Algorithm Association rule mining algorithm [54] 

 

2. Literature Survey: Past Related Work 

 

As mentioned in section 1, one of the earliest known examples of the use of modern data mining 

tools in archaeology can be seen in the work of Hodder et al [6]. The authors through their 

study show how various clustering techniques, when sensitively employed, can dramatically 

extend and refine the information presented in distribution maps and other analyses of spatial 

relationships. Clustering analysis remains, to this date, one of the most widely used data mining 

technique in the field of archaeology and clustering capabilities are built into modern day GISs 

which are indispensable to the field of archaeology. GIS stands for geographical information 

system and is used in archaeology to study the spatial distribution of artefacts. Coupled with 

strong clustering capabilities, this technology can help unveil settling patterns, artefact 

deposition patterns, highlight activity hubs, and facilitate chronological and cultural phase 

analysis. An example of such a system is ArGIS [13].  
 
A study that uses a combination of different data mining techniques to investigate found 

artefacts is the one conducted by Fermo et al [14]. In their work, they examined archaeological 

ceramic shards belonging to three principal but distinct classes namely the African Red Slip 

Ware, the Dougga ware, and the African Cooking ware from modern day Tunisia using various 

different classes of mining techniques. They utilized algorithms such as PCA for pattern 

recognition, KNN and SIMCA for classification and hierarchical clustering in their study to 

unveil interesting patterns. Next, Sanchez-Romero et al [15] explore spatial analysis methods 

in Palaeolithic site studies, assessing georeferencing, spatial modelling, density analyses, 

hotspots, and unsupervised classification. Emphasizing interdisciplinary approaches, the paper 

contrasts clustering algorithms like Kernel Density Estimation Clustering Algorithm (KCA) 

and k-means for enhanced spatial archaeological insights. 

 

In terms of novel archaeology specific algorithms, Casper et al [16] propose Archsphere, a 

clustering algorithm that is designed specifically keeping in mind the nature of archaeological 

data. Their proposed approach is positioned to work better than existing algorithms and 

accounts for shortfalls in generic cluster algorithms like the difficulty to cluster point clouds 

with varying densities in DBSCAN or the absence of a notion of noise in k-means. Their 

algorithm detects clusters with varying densities, incorporating a structural parameter and 

spatial location information, represented by connected spheres around each point, where two 

objects are considered connected if their spheres touch or overlap; clusters are automatically 

identified using Breadth First Search (BFS), with parameters for minimum cluster points, 

weight, and noise, and distances are determined based on sightlines between monuments in 

three dimensions. 

 

In order to test the hypothesis of the existence of nine spatially distinct local residence groups 

exiting within Lualualei archaeological records of Hawaii, Dixon et al [17]  employed K-means 

clustering analysis. The K-means analysis assumed nine clusters based on the initial grouping 
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of sites, with the goal of minimizing variability within clusters and maximizing variability 

between clusters. The results indicated the presence of eight clusters, interpreted as local 

residence groups, revealing spatial patterns and relationships within the archaeological data. 

The study combined the K-means analysis with a rank-size analysis of permanent habitation 

and ritual structures to further explore socio-political centralization in Lualualei valley, 

providing insights into settlement patterns and land use practices. 

 

Motivated to define a more suitable method for assigning samples to groups in archaeological 

materials, Lopez-Garcia et al [18] presented a comparison between three non-supervised 

model-based clustering methods focusing on the selection of informative variables and 

assigning samples to groups. Once the important variables for clustering have been selected, a 

data projection method called PSwarm [19] is used for the projection of high-dimensional data. 

 

Bi et al [20] worked with spatial data from the Jiangzhai site in what is modern day China. 

They worked with the relic distribution map of this region and transformed the images into 

vector graphics and used these representations for mining information. The study uses decision 

tree classification with the C4.5 algorithm and k-means clustering algorithm to analyze the 

distribution rules of house groups and internal structure of the Jiangzhai site. Further, Rasheed 

et al [21], present a novel framework to solve the problem of classification and reconstruction 

of archaeological fragments. The proposed methodology consists of two phases: Classification 

of Ancient Fragments (CAF), and Reconstruction of Ancient Objects (RAO). Classification is 

performed based on texture and color properties extracted from images using a custom 

Euclidean distance based approach. The proposed method achieved a success rate higher than 

previous studies when applying the same test dataset. 
 
A very interesting application of classification in the archaeological domain is the work 

presented by Canul-Ku et al [22]. They attempt to classify artefacts based on their three 

dimensional representations by generating 3-Dimensional shape descriptors using the VGG-16 

neural network. Once generated, these vectors were fed to classification algorithms such as 

KNN and SVM/SSVM to predict the actual shape of the artefact. In terms of final outcomes, 

while the performance of their KNN and SVM/SSVM was comparable and none had more 

advantage in terms of actual accuracy metrics, because the KNN took greater time to classify 

higher dimension neighbours and was more prone to overfitting, they preferred SVM/SSM. 

 

Markidis et al [23] present a methodology for the automatic classification of archaeological 

sherds. Sherds are fragments of relics with little to no marking on them making manual 

classification and categorization difficult. They used features on the back and front of the 

shards such as color, texture, chrominance etc and converted that into global descriptor vectors 

and then used KNN to classify the sherds into one of the ground truth classes based on 

previously classified samples. On the other hand, Li-Ying et al [24] classified ancient sherds 

using solely texture-based features, which were extracted by applying Gabor wavelet 

transformations. These features were then used to classify sherds using an unsupervised kernel 

fuzzy clustering algorithm [25]. 

 

Archaeometry data provides information about the chemical composition of the found artifact 

[26]. An early attempt to apply classification to archaeometry data was done by Kowalski et al 

[27]. They used obsidian samples from around the region of northern California and used 

clustering algorithms such as ISODATA to achieve hyperplane separation amongst the data 

points and hence attempted to classify them into groups of similar artefacts. They also used the 

k-nearest neighbour algorithm and experimented with different values of K to observe the 

https://en.wikipedia.org/?curid=1417149
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evolution of produced clusters. Mussumarra et al [28] too worked with archaeometry data but 

instead of working with ceramics, they attempted to use the percentage of acid soluble 

components (ASC) and the aggregate granulometric distribution in mortars from two classes – 

Gothic and Flemish wall painting plaster samples. For classification, they used the SIMCA 

binary classification algorithm.  

 

Further, Baxter [29] conducted a study applying data mining on Israeli glass data and analyzed 

241 specimens with techniques like PCA, LDA, hierarchical clustering, k-means, k-medoids, 

fuzzy clustering, KNN, logistic regression, SVM, and decision trees based on Gini index. The 

glass specimens, based on seven chemical variables, were classified into five groups linked to 

specific sites and furnaces by the original researchers. Garcia-Heras et al [30] used chemical 

characteristics of archaeological ceramics and employed a PCA based clustering for 

identification of distinct groups. In their article, Charalambous et al [31] utilize classification 

techniques such as KNN classifier, C4.5 decision tree algorithm and a neural network based 

Learning Vector Quantizer to classify a dataset of 177 ceramics obtained from early to middle 

bronze age period from Cyprus. Their work reinforces the importance and support that data 

mining offers to archaeologists by helping classify ceramics which could not be classified into 

categories based on traditional ceramic petrography based approaches.  

 

Moving on from Archaeometry to the problem of aerial photography classification, Kobylinski 

et al [32] employed association rule mining and classification using the EdgeFlow algorithm 

[33] for image segmentation. They worked to extract color and texture features from segmented 

images, normalized them, and went on to create a visual dictionary with this information. They 

built their image classifier using association rule mining on a learning set to identify key 

relationships between image features and categories. This compact classifier automates 

categorization by labelling new photographs based on matching rules, defaulting to a class label 

if no rules are met. 

 

Furthering the exploration of the use of rule mining, Wilcke et al [34] proposed the MINOS 

pipeline which can be utilized to mine association rules in knowledge graphs with a particular 

focus on archaeological applications. Their methodology is based on the SWARM association 

rule mining algorithm [35] which is specifically designed for RDF or Resource Description 

Framework data in the context of knowledge graphs to automatically mine semantic association 

rules.  

 

Another interesting study is the one conducted by Brown et al [36] that utilizes Text mining 

approaches such as word frequency and n-grams to mine information from set of oral histories 

from the anthracite coal mining region of north-eastern Pennsylvania, where the industry was 

dying, and communities remembered work and the struggle to survive during the industry’s 

decline. The most common word identified was “mines,” and there was also an emphasis on 

family indicated with discussions that included terms like “father,” “mother,” “family,” “born,” 

“married,” and “children.” There was also some evidence to suggest ethnic tensions and 

identities in the community, as interviewees emphasized ethnic affiliations, such as “Polish,” 

“Irish,” and “English.” These terms indicated a heightened awareness of collective identity and 

ethnic differences.  
Table 2: Overview of Surveyed Articles 

Authors Algorithms Used Technique 

Hodder et al [6] K-means Clustering Clustering 

Fermo et al [14] PCA, K-Nearest Neighbour, SIMCA, Hierarchical clustering Clustering, Classification, Pattern  
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Discovery 

Sanchez-Romero et al 

[15] 

the Kernel Density Estimation Clustering Algorithm (KCA) , K-

Means Clustering 
Clustering 

Casper et al [16] Archsphere Clustering Algorithm Clustering  

Dixon et al [17] K-means Clustering Clustering 

Lopez-Garcia et al [18] PSwarm Clustering Clustering 

Bi et al [20] Decision tree and k means clustering Clustering, Classification 

Rasheed et al [21] Euclidian distance based approach Classification 

Canul et al [22] KNN, SVM Classification 

Markidis et al [23] KNN Classification 

Li-Ying et al [24] Fuzzy Clustering Clustering, Classification 

Kowalski et al [27] ISODATA, KNN Clustering, Classification 

Mussumarra et al [28] SIMCA binary classification, PCA Classification 

Baxter [29] 
PCA, LDA, hierarchical clustering, K-Means, k-medoids, KNN, 

Logistic regression, SVM, ginny index based decision tree 
Classification, clustering 

Garcia-heras et al [30] PCA based clustering clustering 

Charalambous et al [31] 
KNN, C4.5 decision tree, neural network based Learning Vector 

Quantisation  
classification 

Wilcke et al [34] MINOS Pipeline Rule Mining 

Brown et al [36] Word Frequency and N-grams Text Mining 

Kobylinski et al [32] EdgeFlow Algorithm and Association Rule Mining for Classification Classification 

 

In table 2 above, a brief summary of the research articles surveyed has been provided. 

 

3. Applications of Data Mining in Archaeology: A Case Study Approach 

 

In this section of the article, three case studies are presented to demonstrate the practical 

applicability of data mining techniques in the field of Archaeology. The first case study utilizes 

a dataset on ancient Greek pottery. Using the KModes algorithm, we cluster the data points 

across different time frames to understand the shift in the kind of pottery production patterns 

and practices.  In the second case study, we work with a radiocarbon dating dataset to create a 

random forest classifier that given information about a given material can help predict the 

Archaeological period to which that material might belong. Finally, in the third case study, we 

work with a dataset about ancient graves across the United Kingdom to identify frequently 

buried object sets using the Apriori algorithm. A detailed description of the data sources, the 

pre-processing steps, the application of data mining techniques, and the consequent results and 

inferences drawn are presented in the sections below. 

 

3.1. Case Study 1 – Clustering with Greek Pottery 

 

In this case study, the KModes clustering algorithm has been applied to the data across different 

timelines helped identify trend groups across different geographical locations and the shift and 

spread in pottery techniques. The case study works with data obtained from the Beazley 

Archive Pottery Database (BAPD) which is the world’s largest database that contains 

information on ancient Greek painted Potter. The BAPD is currently being maintained by the 
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Classical Art Research Centre at Oxford University [37]. The dataset is composed of 

information on ancient vases most of which are estimated to have been created during the 

period from 6th to 4th century BC. For the present case study, a subset of this data containing 

information about the vases was worked with. The figure X below illustrates an initial snapshot 

of the data utilised. 

 

 

Figure 1: Initial Snapshot Of The BAPD Dataset 

 

The dataset in its raw form contained 29 columns with information such as the shape, of the 

vases, their provenance or location of origin, estimated date of creation, inscribed text, etc. In 

addition to such relevant columns for our present application, additional columns such as URI, 

LIMC ID, etc were also present that were not of use for the present application and were hence 

removed. Furthermore, an initial look into Null values indicated that columns such as 

measurement, volume, weight, etc had 99-100% of their values as null values, so these were 

also filtered out. This resulted in a dataset containing seven most relevant columns for the 

present analysis. These were –  ['Vase Number', 'Fabric', 'Technique', 'Shape Name', 

'Provenance', 'Date', 'Inscriptions']. This is shown in the figure below.  

 

 

Figure 2: Cleaned BAPD Dataset 

 

Furthermore, the Inscriptions attribute initially contained the actual textual inscription 

embedded on the pots and about 65% of the rows had Null value for this attribute. Since it is 

difficult to predict or impute actual inscriptions but at the same time the presence or absence 

of inscriptions is an important indicator, a modification was made to this column. A Boolean 1 

was put to indicate the presence of inscription and a 0 was put to indicate the presence of 
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inscriptions. Next, after performing preliminary analysis on the attributes, it was observed that  

all the selected columns had categorical values. The Fabric column had very skewed values 

with about 3/4th of them having the value “Athenian”. Further investigation into the dataset 

revealed that since the data is primarily about Greek pottery most of which was created using 

clay from within the region, a majority of artefacts having the Fabric value of “Athenian” 

makes sense. However, since this might not contribute to trend identification since the value is 

pretty uniform , this column was ultimately not considered in the classification task. 

 

Further, to prevent multiple representations of the same item, the fuzzywuzzy library in python 

was used for approximate string matching. This library uses the Levenshtein distance algorithm 

in tandem with a threshold value to calculate the minimum number of single character edits 

that would be required to change one string to another. This string matching helps to group 

together similar categorical values to have cohesive non repetitive categories in the dataset. 

This resulted on the final dataset that was used for K-modes clustering.  

 

3.1.1. The KModes Algorithm and Cluster Generation 

 

For the present application, the K-modes clustering algorithm was selected. This was because 

the entire dataset is composed of categorical values and K-modes is an algorithm specifically 

designed to handle this type of data. Unlike traditional clustering algorithms that use distance 

metrics, K-modes uses the most frequent values within each cluster to determine the centroid. 

A sample pseudocode outlining the algorithm is shown in the figure below. 

 

 

Figure 3: Pseudocode For The K-Modes Clustering Algorithm 

 

Just like all k parameter based clustering algorithms, the choice if k is a pivitol consideration. 

For the present application, we divide the dataset into sections based time periods and then ran 

a silhouette score analysis on the above chunks of the data. The results produced by the 

Silhouette analysis are shown in the figure below. 
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Figure 4: Silhouette Score For Different Time Based Subsets Of The BAPD Dataset 

 

Observing the silhouette scores and consequently the number of optimal clusters, it can be 

observed that while for most of the defined time period, two clusters remain the standard 

distribution, there is a period of 4 time frames where there is a slight shift observed and we 

thus focus our attention to these periods. From -550 to -500 the optimal number of clusters is 

2 but then from -500 to -450, the number of optimal clusters jumps to 4. From -475 to -425 this 

value falls to 3 and then again to 2 in -400 to -300. The optimal cluster number remains pretty 

uniform at 2 for the next time periods. Based on the obtained optimal K values, the KModes 

clustering analysis was performed separately for all these k periods and the most common 

behaviour for each of the clusters in each of the time periods was identified. A detailed 

presentation of the results and their implications are discussed in the section below. 

 

3.1.2. Results and Implications 

 

First, for the period from -550 to -500 the number of observed optimal k value is 2 and after 

clustering, the centroids for the 2 clusters observed are shown in the image below. 

 

 

Figure 5: Centroids For K-Modes Clusters For The Time Period -550 To -500 

 

For the period from -500 to -450, the number of optimal clusters jumps to 4 and after applying 

K-modes clustering, the centroids of the clusters are shown in the image below. 

 

 

Figure 6: Centroids For K-Modes Clusters For The Time Period -500 To -450 
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From -475 to -425 this value falls to 3 and after applying K-modes clustering, the centroids of 

the clusters are shown in the image below. 

 

 

Figure 7: Centroids For K-Modes Clusters For The Time Period -475 To -425 

 

In -400 to -300 it falls down back to 2 and the centroid of the clusters are shown in the image 

below. 

 

 

Figure 8: Centroids For K-Modes Clusters For The Time Period -400 To -300 

 

From the results of the above clustering exercise, it can be seen that in the period from -550 to 

-500, there are two main groups of Greek vases identified. The first is Pyxis shaped vases from 

Italy with no inscriptions and black figure painting and the second is Astragalos shaped vases 

from Greece with no inscriptions and black painted figures suggesting similar styles but with 

distinct characteristic elements. This is indicative of cultural and goods exchange between the 

two major identified communities – Archaic period Greece and Italy. Thus observation is also 

backed by the  existence of external evidence suggesting that while these were distinct 

communities, significant trading was underway between them.  

 

The clustering results of the period from -500 to -450 shows a sudden jump in the identified 

pottery clusters. It indicates now that in Italy, Astragalos shaped pottery with red painted 

figures and no inscriptions was prevalent -  a shape and design characteristic of Greece in the 

previous year frame. Within Greece itself emergence of new shapes and designs can be seen 

indicating diversification of pottery production techniques. The next time period from -475 to 

-425 is indicative of a decline in Krater shaped pottery which is an ewer like vessel used for 

mixing vine with water. This could be indicative of a shift in social practices and preferences. 

Lastly, from -400 to -300 BCE, the emergence of Red-figure Astragalos from Spain and Red-

figure Pyxis from Greece shows the further diversification in pottery styles possibly indicating 

the dynamic nature of artistic expression and cultural diffusion across different regions within 

this time period.  

 

Thus, in conclusion it can be said that, the clustering analysis of ancient Greek pottery data 

reveals distinct patterns in evolution, indicating cultural exchanges between Greece and Italy, 

shifts in artistic preferences, and diversification of production techniques over various 

historical periods. The clustering results offer valuable insights into the dynamic nature of 

ancient societies and their interconnected artistic traditions reinforcing the utility of data 

mining techniques in the field of archaeology for pattern detection and hypothesis support.  
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3.2. Case Study 2 – Using Classification to Date South African Artifacts 

 

This case study utilizes the Southern African Radio Carbon dataset as maintained by the 

Radiocarbon Accelerator Unit at the University of Oxford along with a random forest classifier 

in order to predict the Archeologic Period to which an artefact belongs. The South African 

Radio Carbon Dataset or SARD is an open-access online data repository maintained at the 

University of Oxford’s Radio Carbon Accelerator unit or ORAU [55]. The dataset contains 

information on materials and their radiocarbon dates from South African Archaeological sites. 

The raw form of the data is illustrated in the figure below. Initially the dataset constituted of 

22 attributes. This is shown in the figure below.  

 

 

Figure 9: An Initial Snapshot Of The SARD Dataset 

 

For the present case study only a subset of these attributes was considered and the retained 

attributes list is ['Country','Province or district', 'Biome', 'Dating technique', 'Material dated', 

'Archaeological Period', 'Site Type']. From within the selected columns further cleaning and 

pre-processing had to be performed to prepare the data for the classification random forest 

model. Firstly, he country and province attributes were merged to obtain a unique location 

identifier. Next, the fuzzywuzzy library was employed for the removal of redundant material 

values through fuzzy logic. Finally, the missing values in the Archaeological Period Attribute 

were taken care of using mode imputation. Following, the pre-processing the data distribution 

of the target variable - the archaeological period - was visualized to get a better gauge on what 

type of decision tree model would work best. This is shown in the figure below.  

 

 

Figure 10: Distribution Of The Categorical “Archaeological Period” Attribute 
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As can be seen from the figure above, the categorical data is skewed in nature and this issue 

needs to be addressed to build a sound classifier. The method used to address of this issue, as 

well as the decision tree model that was built are described in detail in the section that follows. 

 

3.2.1. Addressing Skewness and building the decision tree classifier 

 

Random forest classifiers are a class of ensemble learning classification algorithms that work 

on the concept of using multiple weak learners and combining their classification power to 

create a strong and sound prediction model. In our case, a random forest model with 100 

decision trees was created and bagging or bootstrap aggregation was used in order to combine 

the results of the prediction to produce the final classification results. Furthermore, since the 

data in our case is skewed, we use class weights to improve the performance of the low 

frequency classes.  The pseudocode for the mechanism used for the creation of the present 

random forest classifier is provided below. 

 

 

Figure 11: Pseudocode For The Random Forest Classifier 

 

The class weights parameter is used while creating the random forest classifier. While the two 

biggest classes in the target variable are given the same weight, the class with the least number 

of samples is given a higher weight. The results of the classification using the random forest 

thus created are presented in the section that follows. 

 

3.2.2. Classifier results and metrics 
 

The random forest classifier created above was trained on test and train subsections of the data. 

A ratio of 80-20 was used for the test train split exercise. The model was suitably trained and 

the results of the classification are presented below. 
 

 

Figure 12: Classification Results From The Random Forest Model 
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As can be seen from the figure above, the overall accuracy of the model is approximately 92%. 

This marks an overall 10% increase in accuracy from the case where oversampling was used 

to address the target attribute’s class imbalance indicating that for our present application, the 

class eight approach of handling skewness works better. As can be seen from the results 

presented in the figure above, the precision which is a measure of the accuracy of positive 

predictions, about 99% of the instances were predicted as positive correctly whereas for LSA 

this number was 93% of the samples. In case of MSA however, this value is much lower at 

47%.  

 

Similarly for the Recall that evaluates the proportion of true positive instances correctly 

identified by the model, The performance of Iron Age and LSA class is good at 92% and 96% 

respectively whereas the performance of the model for the MSA class is quite low at 40%. The 

F1 score which indicates the proportion of correct predictions made across the model values 

are similarly high for Iron Age and LSA. This indicates that despite oversampling and class 

weight metrics, the imbalance in class while not significantly impacting the overall model 

performance, remains a significant disadvantage of our model. And while these skewness 

handling techniques do help in improving the prediction capabilities in, the 89% difference in 

values between MSA and the Iron age class in terms of samples can only truly be bridged using 

more data. Overall, using the SARD we successfully built a reasonably performing model that 

given characteristics about a sample can act as a precursor to complicated radio carbon dating 

procedures and offer initial indicators about the time period of origin of an unearthed artifact. 

 

3.3. Case Study 3 – Association Rule Mining on Buried Grave Goods 

 

In this case study, the data repository maintained at the Digital Archive for Grave Goods: 

Objects and Death in Later Prehistoric Britain as maintained by the UK’s Archaeology Data 

Service was used. This database contains information on grave artifacts from the Neolithic, 

Bronze Age, and Iron Age [56]. The objective of the study is to use the dataset to explore 

relationships amongst the burial site attributes and the grave goods using association rule 

mining to identify the significance of specific goods occurrences within distinct cultural 

contexts and periods resulting in a holistic view of burial practices in older civilizations.  

 

The dataset contains information on the goods found in excavated graves from the Neolithic, 

Bronze Age, and Iron Age Britain, roughly from 4000 BC to AD 43. The database itself is 

made up of multiple distinct csv files that can be linked together to create the entire 

comprehensive data set. At first, each of these files was pre-processed and cleaned. Fuzzy string 

matching was used to standardise the categorical values and mode imputation was used to 

handle missing values. Following this, python programming language and the joins and group 

by capability offered by its pandas library were used to combine the distinct csv files into one 

central data frame. This final dataset with relevant attributes is illustrated in the figure below.  

 

 

Figure 13: Constructed Grave Goods Dataset 
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The dataset had information on graves distributed across the following regions in the UK  - 

Cornwall and the Isles of Scilly, Dorset, Kent, East Yorkshire, Gwynedd and Anglesey, Orkney 

and the Outer Hebrides. From within these regions, four geographically distinct areas namely 

Cornwall, Kent, Orkney and the Outer Hebrides, and East Yorkshire were selected for frequent 

item set mining. The data for each of these locations based on the ‘Case_study_area’ attribute 

was extracted separately and Apriori algorithm was run on this dataset to identify frequent 

goods sets buried with human remains across the study sites. The application of the algorithm 

along with the results are discussed in the section that follows. 

3.3.1. Application of Apriori algorithm to mine frequent object sets 

 

The Apriori algorithm is one of the central techniques in data mining frequent item set 

identification. Given a list of transaction like entries, this algorithm can effectively help 

recognise items that most frequently occur together across the entirety of the provided data. 

The key idea of Apriori is the "apriori property," which states that if an itemset is frequent, then 

all of its subsets must also be frequent. This property allows the algorithm to prune the search 

space, making it more efficient. A Pseudocode giving an overview of the working of the Apriori 

algorithm is provided below. 

 

 

Figure 14: Pseudocode For The Apriori Algorithm 

 

In the present case study, we try to draw on this "apriori property" quality to identify frequently 

occurring grave goods and study the implications of the results in the geographical context. 

The apyori package’s Apriori library in python programming language was used in order to 

implement this data on the given dataset. The results produced for the selected four 

geographical regions and the implication of the results is discussed in the next section. 

 

3.3.2. Results and Implications 

 

Starting with data from the region of East Yorkshire, the application of the Apriori algorithm 

produced the frequent item sets shown in the figure below along with associated support values.  
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Figure 15: Frequent Item Sets For The Region Of East Yorkshire 

 

In this case, the presence of the set (Brooch, Animal remains, Pot) might suggest a burial 

practice where individuals were adorned with brooches, and animal remains and pots were 

included in the burial as offerings or for symbolic purposes. Further, he presence of spearheads 

and swords together could indicate a warrior burial or a community with a strong martial 

tradition. The presence of (Scabbard, Sword) set reinforces the martial aspect, suggesting the 

inclusion of sword-related items in burials. In addition the presence of (Scraper, Knife) set 

might suggest a burial related to craftsmanship or daily activities involving tools. The presence 

of a chariot or cart along with animal remains might indicate a burial with elements of 

transportation and perhaps a higher social status. Next, for the region of Kent, the item sets 

shown in the figure below were identified. 

 

 

Figure 16: Frequent Item Sets For The Region Of Kent 

 

In the case of item sets identified for ancient graves in Kent, the presence of the combination 

of a bucket and brooch might suggest a burial with items associated with personal adornment 

and daily use. The identification of the (Beads, Animal remains) set could further indicate a 

burial with a focus on personal ornamentation and the importance of animals in the cultural or 

economic context. The combination of (Bucket, Animal remains, Pot) suggests a burial with a 

mix of functional and symbolic artifacts. For the region of Cornwall, the frequent sets shown 

in the figure below were identified. 
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Figure 17: Frequent Item Sets For The Region Of Cornwall 

 

For Cornwall, the presence of (Brooch, Rings) set suggests a burial with items associated with 

personal adornment, indicating a focus on aesthetics – similar to Kent. The presence of shells 

and animal remains might signify a burial with items related to the natural environment or 

possibly ritual practices. The (Pebble, Arrowhead) set is intriguing and may suggest a burial 

with items associated with hunting or ritual significance. Finally for the region of Orkney and 

Outer Hebrides, the frequent item sets shown in the figure below were identified.  

 

 

Figure 18: Frequent Item Sets For The Region Of Orkney And Outer Hebrides 

 

The item sets identified in this region are by far the most characteristic and definitive of the 4 

sites studied. The (Point, Animal remains) set could indicate a burial associated with hunting 

or possibly ritual practices. The (Beads, Awl) and (Beads, Blade) sets suggest burials with 

items related to craftsmanship or personal ornamentation. The (Flake, Scraper) and (Flake, 

Scraper, Pot) sets suggest burials with items associated with tool use and possibly daily 

activities. Thus Orkney and Outer Hebrides burial finds suggest a population with a strong 

focus on hunting, craftsmanship, and daily tool use. 

 

4. Conclusions 

 

The amalgamation of ancient wisdom and contemporary analytics is reshaping archaeological 

research. With a myriad of data now accessible, mining and analysis techniques serve as a 

bridge between antiquity and the data-driven age, enriching our comprehension of human 

history and culture in unprecedented ways. In this article, we provided a detailed overview of 

utility of using data mining principles in archaeology. An overview of the historical 
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relationship between the two fields along with the factors influencing research development 

was provided. Additionally, a detailed survey of the current status of research was conducted 

and a brief overview of some of the most promising work in the field was presented. Further, 

in order to demonstrate the advantage of the use of data mining algorithms in archaeology data, 

three comprehensive case studies were also presented each of which led to interested pattern 

observations.  

 

The findings of this article underscore the collaborative nature of interdisciplinary research, 

where data mining becomes a tool to uncover societal structures and cultural exchanges 

throughout history. And while it is evident that the exploration of the past through analytical 

frameworks is an ongoing discourse, as data mining in archaeology continues to illuminate 

hidden facts from our collective heritage, the excitement of venturing into new territories 

through these tools is only increasing. 

5. References  

 

[1] Duarte, F. (2023, April 3). Amount of data created daily (2023). Exploding Topics. 

https://explodingtopics.com/blog/data-generated-per-day 

[2] Schlanger, S. H., Wilshusen, R. H., & Roberts, H. (2015). From Mining Sites to Mining 

Data: Archaeology’s Future. The Kiva, 81(1–2), 80–99. 

https://doi.org/10.1080/00231940.2015.1118739 

[3] Puyol-Gruart, Josep. (2002). Computer Science, Artificial Intelligence and Archaeology. 

Archaeologists use lidar technology to map wealth and status in ancient Maya society. 

(n.d.). Tulane News. https://news.tulane.edu/news/archaeologists-use-lidar-technology-

map-wealth-and-status-ancient-maya-society 

[4] Saraceni, J. E. (n.d.). New 3-D facial reconstruction of Tutankhamun released - 

Archaeology Magazine. https://www.archaeology.org/news/11492-230608-tutankhamun-

facial-approximation 

[5] Spatial analysis in Archaeology. (n.d.). Google Books. 

https://books.google.com/books/about/Spatial_Analysis_in_Archaeology.html?id=dgQ4

AAAAIAAJ 

[6] Kintigh, K. (n.d.-b). America’s archaeology data keeps disappearing – even though the 

law says the government is supposed to preserve it. The Conversation. 

https://theconversation.com/americas-archaeology-data-keeps-disappearing-even-

though-the-law-says-the-government-is-supposed-to-preserve-it-104674 

[7] McManamon, F., Kintigh, K., Ellison, L. A., & Brin, A. (2017). TDAR. Advances in 

Archaeological Practice, 5(3), 238–249. https://doi.org/10.1017/aap.2017.18 

[8] Planning for the creation of digital data – Archaeology Data Service. (n.d.). 

https://archaeologydataservice.ac.uk/help-guidance/guides-to-good-practice/the-project-

lifecycle/planning-for-the-creation-of-digital-data/ 

[9]  The Digital Archaeological Record. (2018, October 6). The Digital Archaeological 

Record. https://www.tdar.org/ 

https://explodingtopics.com/blog/data-generated-per-day


 20 

[10] Huggett, J. (2020). Is big digital data different? Towards a new archaeological paradigm. 

Journal of Field Archaeology, 45(sup1), S8–S17. 

https://doi.org/10.1080/00934690.2020.1713281 

[11] Ouellette, J. (2021, January 6). Archaeology is going digital to harness the power of Big 

Data. Ars Technica. https://arstechnica.com/science/2021/01/archaeology-is-going-

digital-to-harness-the-power-of-big-data/ 

[12] Data mining based on an archaeological geoinformation system ArGIS. (2016, November 

1). IEEE Conference Publication | IEEE Xplore. 

https://ieeexplore.ieee.org/document/7818975 

[13] Fermo, P., Delnevo, E., Lasagni, M., Polla, S., & De Vos, M. (2008). Application of 

chemical and chemometric analytical techniques to the study of ancient ceramics from 

Dougga (Tunisia). Microchemical Journal, 88(2), 150–159. 

https://doi.org/10.1016/j.microc.2007.11.012 

[14] Romero, L. L., Benito‐Calvo, A., & Ríos-Garaizar, J. (2021). Defining and Characterising 

Clusters in Palaeolithic Sites: a Review of Methods and Constraints. Journal of 

Archaeological Method and Theory, 29(1), 305–333. https://doi.org/10.1007/s10816-021-

09524-8 

[15] Caspari, G., & Jendryke, M. (2017). Archsphere – A cluster algorithm for archaeological 

applications. Journal of Archaeological Science: Reports. 

https://doi.org/10.1016/j.jasrep.2017.05.052 

[16] Dixon, Boyd & Gosser, Dennis & Williams, Scott. (2008). Traditional Hawaiian men's 

houses and their socio-political context in Lualualei, Leeward west O'Ahu, Hawai'i. 

Journal of the Polynesian Society. 117. 267-295.  

[17] López-García, P., & Argote, D. L. (2023b). Cluster analysis for the selection of potential 

discriminatory variables and the identification of subgroups in archaeometry. Journal of 

Archaeological Science: Reports, 49, 104022. 

https://doi.org/10.1016/j.jasrep.2023.104022 

[18] NEOS Server: PSWarm. (n.d.). https://neos-

server.org/neos/solvers/go:PSwarm/AMPL.html 

[19] S. Bi, S. Xue, Y. Xu and A. Pei, "Spatial Data Mining in Settlement Archaeological 

Databases Based on Vector Features," 2008 Fifth International Conference on Fuzzy 

Systems and Knowledge Discovery, Jinan, China, 2008, pp. 277-281, doi: 

10.1109/FSKD.2008.490. 

[20] Rasheed, N. A., & Nordin, J. (2020). Classification and reconstruction algorithms for the 

archaeological fragments. Journal of King Saud University - Computer and Information 

Sciences, 32(8), 883–894. https://doi.org/10.1016/j.jksuci.2018.09.019 

[21] Classification of 3D archaeological objects using Multi-View Curvature Structure 

signatures. (2019). IEEE Journals & Magazine | IEEE Xplore. 

https://ieeexplore.ieee.org/document/8576529 



 21 

[22] Makridis, M., & Daras, P. (2012). Automatic classification of archaeological pottery 

sherds. Journal on Computing and Cultural Heritage, 5(4), 1–21. 

https://doi.org/10.1145/2399180.2399183 

[23] Q. Li-Ying and W. Ke-Gang, "Kernel fuzzy clustering based classification of Ancient-

Ceramic fragments," 2010 2nd IEEE International Conference on Information 

Management and Engineering, Chengdu, China, 2010, pp. 348-350, doi: 

10.1109/ICIME.2010.5477818. 

[24] Qu, F., Hu, Y., Yang, Y., & Gu, X. (2011). Unsupervised kernel fuzzy clustering based on 

differential evolution algorithm in intelligent Materials system. In Advances in intelligent 

and soft computing (pp. 189–192). https://doi.org/10.1007/978-3-642-23756-0_31 

[25] Wells, E. C. (2014). Archaeometry: Definition. In Springer eBooks (pp. 468–470). 

https://doi.org/10.1007/978-1-4419-0465-2_360 

[26] Kowalski, B. R., Schatzki, T. F., & Stross, F. H. (1972). Classification of archaeological 

artifacts by applying pattern recognition to trace element data. Analytical Chemistry, 

44(13), 2176–2180. https://doi.org/10.1021/ac60321a002 

[27] Musumarra, G., Stella, M., Matteini, M., & Rízzí, M. (1995b). Multiariate 

characterization, using the SIMCA method, of mortars from two frescoes in Chiaravalle 

Abbey. Thermochimica Acta, 269–270, 797–807. https://doi.org/10.1016/0040-

6031(95)02533-2 

[28] Baxter, M. (2006b). A Review Of Supervised And Unsupervised Pattern Recognition In 

Archaeometry*. Archaeometry, 48(4), 671–694. https://doi.org/10.1111/j.1475-

4754.2006.00280.x 

[29] Garcı́a-Heras, M., Blackman, M. J., Fernández-Ruiz, R., & Bishop, R. L. (2001b). 

Assessing Ceramic Compositional Data: A Comparison of Total Reflection X-ray 

Fluorescence and Instrumental Neutron Activation Analysis On Late Iron Age Spanish 

Celtiberian Ceramics. Archaeometry, 43(3), 325–347. https://doi.org/10.1111/1475-

4754.00020 

[30] Charalambous, E., Δικωμίτου-ηλιάδου, Μ., Milis, G., Mitsis, G. D., & Ηλιάδης, Δ. Γ. 

(2016). An experimental design for the classification of archaeological ceramic data from 

Cyprus, and the tracing of inter-class relationships. Journal of Archaeological Science: 

Reports, 7, 465–471. https://doi.org/10.1016/j.jasrep.2015.08.010 

[31] Kobyliński, Ł., & Walczak, K. (2007). Data Mining Approach to classification of 

Archaeological aerial photographs. In Springer eBooks (pp. 479–487). 

https://doi.org/10.1007/3-540-33521-8_52 

[32] Hao, Y., Liu, Y., Wu, Z., Han, L., Chen, Y., Chen, G., Chu, L., Tang, S., Yu, Z., Chen, Z., 

& Lai, B. (2021). EdgeFlow: Achieving Practical Interactive Segmentation with Edge-

Guided  Flow. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2109.09406 

[33] Wilcke, W., De Boer, V., De Kleijn, M., Van Harmelen, F., & Scholten, H. (2019). User-

centric pattern mining on knowledge graphs: An archaeological case study. Journal of Web 

Semantics, 59, 100486. https://doi.org/10.1016/j.websem.2018.12.004 

https://doi.org/10.1007/3-540-33521-8_52


 22 

[34] Barati, M., Bai, Q., & Liu, Q. (2016b). SWARM: An Approach for Mining Semantic 

Association Rules from Semantic Web Data. In Lecture Notes in Computer Science (pp. 

30–43). https://doi.org/10.1007/978-3-319-42911-3_3 

[35] Brown, M., & Shackel, P. A. (2023). Text Mining Oral Histories in Historical 

Archaeology. International Journal of Historical Archaeology, 27(3), 865–881. 

https://doi.org/10.1007/s10761-022-00680-5 

[36] Baxter, M. J. (2015). Exploratory Multivariate Analysis in Archaeology. Eliot Werner 

Publications. https://doi.org/10.2307/j.ctv2sx9gfb 

[37] Beazley Archive Pottery Database (BAPD). Accessed October 26, 2023. 

https://www.beazley.ox.ac.uk/carc/pottery. 

[38] Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent 

developments. Philosophical Transactions of the Royal Society A, 374(2065), 20150202. 

https://doi.org/10.1098/rsta.2015.0202 

[39] Wang, W., Tan, Y., Jiang, J., Lu, J., Shen, G., & Yu, R. (2004b). Clustering based on 

kernel density estimation: nearest local maximum searching algorithm. Chemometrics and 

Intelligent Laboratory Systems, 72(1), 1–8. 

https://doi.org/10.1016/j.chemolab.2004.02.006 

[40] CS221. (n.d.). https://stanford.edu/~cpiech/cs221/handouts/kmeans.html 

[41] Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A Density-Based Algorithm for 

Discovering Clusters in Large Spatial Databases with Noise. Knowledge Discovery and 

Data Mining. 

[42] Cherfi, A., Nouira, K., & Ferchichi, A. (2018). Very fast C4.5 Decision Tree algorithm. 

Applied Artificial Intelligence, 32(2), 119–137. 

https://doi.org/10.1080/08839514.2018.1447479 

[43] Wikipedia contributors. (2023b, November 18). Euclidean distance. Wikipedia. 

https://en.wikipedia.org/wiki/Euclidean_distance 

[44] Hassan, M. U. (2023, May 9). VGG16 – Convolutional Network for Classification and 

Detection. Neurohive / Neural Networks. https://neurohive.io/en/popular-

networks/vgg16/ 

[45] What is the k-nearest neighbors algorithm? | IBM. (n.d.). https://www.ibm.com/topics/knn 

[46] Wikipedia contributors. (2023b, November 4). Support vector machine. Wikipedia. 

https://en.wikipedia.org/wiki/Support_vector_machine 

[47] Musicant, D. R. (n.d.). Smooth support Vector machine home page. David R. Musicant. 

https://research.cs.wisc.edu/dmi/svm/ssvm/ 

[48] Wikipedia contributors. (2023b, October 16). Gabor wavelet. Wikipedia. 

https://en.wikipedia.org/wiki/Gabor_wavelet 

https://doi.org/10.2307/j.ctv2sx9gfb


 23 

[49] Chen, Z., & De B Harrington, P. (2019). Automatic soft independent modeling for class 

analogies. Analytica Chimica Acta, 1090, 47–56. 

https://doi.org/10.1016/j.aca.2019.09.035 

[50] Wikipedia contributors. (2023c, November 3). Linear discriminant analysis. Wikipedia. 

https://en.wikipedia.org/wiki/Linear_discriminant_analysis 

[51] Brownlee, J. (2020, August 14). Learning vector quantization for machine learning. 

MachineLearningMastery.com. https://machinelearningmastery.com/learning-vector-

quantization-for-machine-learning/ 

[52] fuzzywuzzy. (2020, February 13). PyPI. https://pypi.org/project/fuzzywuzzy/ 

[53] What is Bagging? | IBM. (n.d.). https://www.ibm.com/topics/bagging 

[54] Wikipedia contributors. (2023a, September 5). Apriori algorithm. Wikipedia. 

https://en.wikipedia.org/wiki/Apriori_algorithm 

[55] Loftus, E., Mitchell, P., & Ramsey, C. B. (2019). An archaeological radiocarbon database 

for southern Africa. Antiquity, 93(370), 870–885. https://doi.org/10.15184/aqy.2019.75 

[56] Anwen Cooper, Duncan Garrow, Catriona Gibson, Melanie Giles, Neil Wilkin, 2020. 

(updated 2023) https://doi.org/10.5284/1052206.  

 

 

https://en.wikipedia.org/wiki/Apriori_algorithm

